Difference between revisions of "Solidago altissima"
Line 32: | Line 32: | ||
==Ecology== | ==Ecology== | ||
===Habitat=== <!--Natural communities, human disturbed habitats, topography, hydrology, soils, light, fire regime requirements for removal of competition, etc.--> | ===Habitat=== <!--Natural communities, human disturbed habitats, topography, hydrology, soils, light, fire regime requirements for removal of competition, etc.--> | ||
− | ''S. altissima'' is found in | + | ''S. altissima'' is found in thickets, prairies, open woods,<ref name="Ladybird"/> stream banks, limestone glades, sand pine ridges, pond shores, live oak groves, floodplain forests, and marshes.<ref name="Bostick 1971">Bostick PE (1971) Vascular plants of Panola Mountain, Georgia. Castanea 36(3):194-209.</ref><ref name="FSU"> Florida State University Herbarium Database. URL: http://herbarium.bio.fsu.edu. Last accessed: June 2021. Collectors: Loran C. Anderson, K. Craddock Burks, A. F. Clewell, R.K. Godfrey, Bruce Hansen, JoAnn Hansen, and R. Kral. States and counties: Florida: Dixie, Escambia, Franklin, Gadsden, Jackson, Jefferson, Leon, and Walton.</ref> It is also found in disturbed areas including under highway bridges, fields, roadsides, ditches, burned pinelands, and woodland remnants.<ref name="FSU"/> Associated species: ''Schoenus nigricans, Aristida spp., Muhlenbergia, Serenoa repens, Pinus clausa, Heterotheca'', and ''Juniperus''.<ref name="FSU"/> |
+ | |||
+ | It prefers moist to dry soils composed of clay, clay loam, medium loam, sandy loam, sandy and caliche.<ref name="Ladybird"/> In a Wisconsin Prairie, the frequency in 1951 was 32 and in 1961 was 48.<ref name="Anderson 1973">Anderson RC (1973) The use of fire as a management tool on the Curtis Prairie. Proceedings Annual [12th] Tall Timbers Fire Ecology Conference: a quest for ecological understanding. Lubbock, TX pg 23-35.</ref> Also on Wisconsin prairies, aboveground biomass from 1987-1993 averaged 838.4 ± 92.8 g m<sup>-2</sup> and mean percent cover ranging from 14.2-29.3% depending upon the fire regime.<ref name="Howe 1995"/> | ||
''S. altissima'' responds positively to soil disturbance by agriculture in Southwest Georgia.<ref>Hedman, C.W., S.L. Grace, and S.E. King. (2000). Vegetation composition and structure of southern coastal plain pine forests: an ecological comparison. Forest Ecology and Management 134:233-247.</ref> | ''S. altissima'' responds positively to soil disturbance by agriculture in Southwest Georgia.<ref>Hedman, C.W., S.L. Grace, and S.E. King. (2000). Vegetation composition and structure of southern coastal plain pine forests: an ecological comparison. Forest Ecology and Management 134:233-247.</ref> | ||
Revision as of 08:55, 15 June 2021
Solidago altissima | |
---|---|
Photo by Kevin Robertson | |
Scientific classification | |
Kingdom: | Plantae |
Division: | Magnoliophyta - Flowering plants |
Class: | Magnoliopsida - Dicots |
Order: | Asterales |
Family: | Asteraceae |
Genus: | Solidago |
Species: | S. altissima |
Binomial name | |
Solidago altissima L. | |
Natural range of Solidago altissima from USDA NRCS Plants Database. |
Common Name(s): tall goldenrod; Great Plains tall goldenrod; southern tall goldenrod;[1] Canada goldenrod;[2] Canadian goldenrod; late goldenrod[3]
Contents
Taxonomic Notes
Synonym(s): S. canadensis var. scabra; S. hirsutissima; S. pruinosa; S. canadensis var. gilvocanescens
Varieties: S. altissima Linnaeus var. altissima; S. altissima Linnaeus var. pluricephala (Rydberg) Semple; S. altissima Linnaeus var. gilvocanescens M.C. Johnston
Description
Solidago altissima is a dioecious perennial forb/herb.[2] This plant is rough, erect, and produces small yellow flowers that are arranged along upper side of branches, producing a plume.[4] Each ramet contains 20,000 flowers on average.[5] It reaches heights of 3-6 ft (0.91-1.83 m)[3] and forms large compact below-ground rhizome systems.[4] Seeds averaged 42.9 µg.[5]
Distribution
This species is found in all of the lower 48 United States, excluding Washington, Oregon, Nevada, Utah, Idaho, and Wyoming. It also occurs in the Canadian provinces of Saskatchewan, Manitoba, Ontario, Quebec, and New Brunswick.[2] S. altissima is also an exotic invasive in Europe (as cited in[6]).
Ecology
Habitat
S. altissima is found in thickets, prairies, open woods,[3] stream banks, limestone glades, sand pine ridges, pond shores, live oak groves, floodplain forests, and marshes.[7][8] It is also found in disturbed areas including under highway bridges, fields, roadsides, ditches, burned pinelands, and woodland remnants.[8] Associated species: Schoenus nigricans, Aristida spp., Muhlenbergia, Serenoa repens, Pinus clausa, Heterotheca, and Juniperus.[8]
It prefers moist to dry soils composed of clay, clay loam, medium loam, sandy loam, sandy and caliche.[3] In a Wisconsin Prairie, the frequency in 1951 was 32 and in 1961 was 48.[9] Also on Wisconsin prairies, aboveground biomass from 1987-1993 averaged 838.4 ± 92.8 g m-2 and mean percent cover ranging from 14.2-29.3% depending upon the fire regime.[10] S. altissima responds positively to soil disturbance by agriculture in Southwest Georgia.[11]
Phenology
S. altissima has been observed flowering from August through November.[1][12]
Seed dispersal
Initial colonization occurs from seeds producing genets. Once established, increases within the population should occur via the production of ramets (clonal growth) according to a model.[13]
Seed bank and germination
Seed set of S. altissima was 22-25.2% in a study by the University of Kentucky. Another study in Kalamazoo County, Michigan in 1980 displayed a similar seed set of 33.2%, but showed this was higher late-flowering compared to early flowering clones.[5]
Fire ecology
On a Wisconsin tallgrass prairie, two burn cycles of a 3 year interval showed increases in cover during spring and summer burns. However, an increase in cover also occurred on unburned sites, suggesting the burn cycle did not negatively affect S. altissima cover but may not be responsible for the increase.[10]
Pollination
S. altissima attracts birds, butterflies, and a large number of native bees.[3] This includes non-native honey bees.[3][5]
Use by animals
S. altissima responds to insect herbivory by spending energy to maintain itself, rather than producing seeds.[14] There are at least 103 species of insect herbivores of S. altissima, 42 (from 17 families) are specialists on genus Solidago.[15]
Conservation, cultivation, and restoration
Mowing does not effect the growth, survival, or reproduction of juvenile or seedling plants.[16]
Cultural use
Photo Gallery
References and notes
- ↑ 1.0 1.1 Weakley AS (2015) Flora of the Southern and Mid-Atlantic States. Chapel Hill, NC: University of North Carolina Herbarium.
- ↑ 2.0 2.1 2.2 USDA NRCS (2016) The PLANTS Database (http://plants.usda.gov, 118 January 2018). National Plant Data Team, Greensboro, NC 27401-4901 USA.
- ↑ 3.0 3.1 3.2 3.3 3.4 3.5 Plant database: Solidago altissima. (18 January 2018) Lady Bird Johnson Wildflower Center. URL: https://www.wildflower.org/plants/result.php?id_plant=SOAL6
- ↑ 4.0 4.1 Meyer AH, Schmid B (1999) Experimental demography of rhizome populations of establishing clones of Solidago altissima. Journal of Ecology 87(1):42-54.
- ↑ 5.0 5.1 5.2 5.3 Gross RS, Werner PA (1983) Relationships among flowering phenology, insect visitors, and seed-set of individuals: Experimental studies on four co-occurring species of goldenrod (Solidago: compositae). Ecological monographs 53(1):95-117.
- ↑ Meyer AH, Schmid B (1999) Experimental demography of old-field perennial solidago altissima: The dynamics of the shoot population. Journal of Ecology 87(1):17-27.
- ↑ Bostick PE (1971) Vascular plants of Panola Mountain, Georgia. Castanea 36(3):194-209.
- ↑ 8.0 8.1 8.2 Florida State University Herbarium Database. URL: http://herbarium.bio.fsu.edu. Last accessed: June 2021. Collectors: Loran C. Anderson, K. Craddock Burks, A. F. Clewell, R.K. Godfrey, Bruce Hansen, JoAnn Hansen, and R. Kral. States and counties: Florida: Dixie, Escambia, Franklin, Gadsden, Jackson, Jefferson, Leon, and Walton.
- ↑ Anderson RC (1973) The use of fire as a management tool on the Curtis Prairie. Proceedings Annual [12th] Tall Timbers Fire Ecology Conference: a quest for ecological understanding. Lubbock, TX pg 23-35.
- ↑ 10.0 10.1 Howe HF (1995) Succession and fire season in experimental prairie plantings. Ecology 76(6):1917-1925.
- ↑ Hedman, C.W., S.L. Grace, and S.E. King. (2000). Vegetation composition and structure of southern coastal plain pine forests: an ecological comparison. Forest Ecology and Management 134:233-247.
- ↑ Nelson, G. PanFlora: Plant data for the eastern United States with emphasis on the Southeastern Coastal Plains, Florida, and the Florida Panhandle. www.gilnelson.com/PanFlora/ Accessed: 18 JAN 2018
- ↑ Eriksson O (1993) Dynamics of genets in clonal plants. Trends in Ecology and Evolution. 8(9):313-316.
- ↑ Root RB (1996) Herbivore pressure on goldenrods (Solidago altissima): Its variation and cumulative effects. Ecology 77(4):1074-1087.
- ↑ Root RB & Cappuccino N (1992) Patterns in population change and the organization of the insect community associated with goldenrod. Ecological Monographs 62(3):393-420.
- ↑ Meyer AH, Schmid B (1999) Seed dynamics and seedling establishment in the invading perennial Solidago altissima under different experimental treatments. Journal of Ecology 87:28-41.